- #1
Dustinsfl
- 2,281
- 5
$i^z = 2$
Take the principal log so $\theta\in (-\pi, \pi)$
$$
z\log i = \ln 2\Leftrightarrow z\log |i| + zi\frac{\pi}{2} = \ln 2\Leftrightarrow z = \frac{-2i\ln 2}{\pi}.
$$
This is the only solution correct?
Take the principal log so $\theta\in (-\pi, \pi)$
$$
z\log i = \ln 2\Leftrightarrow z\log |i| + zi\frac{\pi}{2} = \ln 2\Leftrightarrow z = \frac{-2i\ln 2}{\pi}.
$$
This is the only solution correct?