- #1
Juli
- 21
- 5
- Homework Statement
- What is the impact parameter of an alpha particle with kinetic energy 4 MeV that is deflected by the angle ##\theta = 15°## when scattered by a gold nucleus (Z =79)?
- Relevant Equations
- $$p = \frac{k}{mv_0^2}cot\frac{\theta}{2} $$ with $$k = \frac{2Ze^2}{4\pi\epsilon_0}$$
Hello everyone, while studying I found this task in my textbook.
Solving this problem with the help of the formula seems quite straightforward. But I get a different result than the solution the textbook offers.
I get: Around ##5∗10^{−15}m## (which is a typical solution for a radius of a nucleus)
Textbook says: ##2.16∗10^{−13}m##The point where I think I probably could be mistaken, is the velocity ##v_0##. I calculated it with ##E= \frac{1}{2}m∗v^2## with ##E=4MeV##.
Is that wrong? I get ##v_0=1.44∗10^7\frac{m}{s}## (which I think is already relativistic, so I think there is my mistake?)
Can anyone verify the solution of the textbook?
I would be very grateful for any help, since I'm quite confused.
Solving this problem with the help of the formula seems quite straightforward. But I get a different result than the solution the textbook offers.
I get: Around ##5∗10^{−15}m## (which is a typical solution for a radius of a nucleus)
Textbook says: ##2.16∗10^{−13}m##The point where I think I probably could be mistaken, is the velocity ##v_0##. I calculated it with ##E= \frac{1}{2}m∗v^2## with ##E=4MeV##.
Is that wrong? I get ##v_0=1.44∗10^7\frac{m}{s}## (which I think is already relativistic, so I think there is my mistake?)
Can anyone verify the solution of the textbook?
I would be very grateful for any help, since I'm quite confused.
Last edited: