- #1
nomadreid
Gold Member
- 1,729
- 229
- TL;DR Summary
- In the plane, two reflections across non-parallel lines make a rotation around the point of intersection of those two lines. But in 3D, do two reflections across non-parallel planes make a rotation around the line of intersection of the two planes?
The easiest proof I know for the 2D statement in the summary does not carry over nicely to the 3D statement since rotations in 3D don't necessarily commute (the 2D proof uses this commuting among rotations in the plane around a common point). Before I then try to modify the proof so that it works, I would like to know whether the statement for 3D is even true. Thanks in advance.