Alternate form of Principle of superposition

member 731016
Homework Statement
I am trying to reword my textbook definition of the principle of superposition in terms of propositional logic
Relevant Equations
$$L[y] = y^{''} + p(t)y^{'} + q(t)y = 0$$
The definition is,
1712891868313.png

I rewrite it as $$(L[y_1] = L[y_2] = 0) \rightarrow (L[c_1y_1 + c_2y_2] = 0)$$.

However, I also wonder, whether it could also be rewritten as,

$$(L[c_1y_1 + c_2y_2] = 0) \rightarrow (L[y_1] = L[y_2] = 0) $$

And thus, combining, the two cases,

Principle of superposition. $$(L[c_1y_1 + c_2y_2] = 0) ↔ (L[y_1] = L[y_2] = 0)$$

Is my reasoning correct please?

Thanks for any help!
 
Physics news on Phys.org
As long as you include the statement about ”any coefficients ##c_1## and ##c_2##” it is obvious that if ##L[c_1y_1 + c_2y_2] = 0## then each of the ys is a solution.
 
  • Like
  • Love
Likes member 731016 and DaveE
Orodruin said:
As long as you include the statement about ”any coefficients ##c_1## and ##c_2##” it is obvious that if ##L[c_1y_1 + c_2y_2] = 0## then each of the ys is a solution.
Thank you for your reply @Orodruin!

Yes that is a good idea to quantify my statement with ∀ to give

$$(L[c_1y_1 + c_2y_2] = 0) ↔ (L[y_1] = L[y_2] = 0)$$ $$∀c_1, c_2 ∈ \mathbb{R}$$


Thanks!
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top