- #1
paulmdrdo1
- 385
- 0
another trig problem that i tried to solve. just want know an alternative way of solving this without using product formula.
$\displaystyle\int \sin(3x)\cos(5x)dx$
anyways this is how i solved it
$\displaystyle\int\frac{1}{2}\sin(3x-5x)+\frac{1}{2}\sin(3x+5x)dx$
$\displaystyle\int\frac{1}{2}\sin(-2x)+\frac{1}{2}\sin(8x)dx$
$\displaystyle\frac{1}{2}\int\sin(-2x)dx+\frac{1}{2}\int\sin(8x)dx$
$\displaystyle u=-2x$; $\displaystyle du=-2dx$; $\displaystyle dx=-\frac{1}{2}du$
$\displaystyle v=8x$; $\displaystyle dv=8dx$; $\displaystyle dx=\frac{1}{8}dv$
$\displaystyle-\frac{1}{4}\int\sin(u)du+\frac{1}{16}\int\sin(v)dv$
$\displaystyle -\frac{1}{4}(-\cos(-2x))+\frac{1}{16}(-\cos(8x))+C$
$\displaystyle \frac{1}{4}\cos(-2x)-\frac{1}{16}\cos(8x)+C$ ---- this is my answer.
the -2x part in this answer is bothering me because in my book it's not negative. please tell me why is that.
$\displaystyle\int \sin(3x)\cos(5x)dx$
anyways this is how i solved it
$\displaystyle\int\frac{1}{2}\sin(3x-5x)+\frac{1}{2}\sin(3x+5x)dx$
$\displaystyle\int\frac{1}{2}\sin(-2x)+\frac{1}{2}\sin(8x)dx$
$\displaystyle\frac{1}{2}\int\sin(-2x)dx+\frac{1}{2}\int\sin(8x)dx$
$\displaystyle u=-2x$; $\displaystyle du=-2dx$; $\displaystyle dx=-\frac{1}{2}du$
$\displaystyle v=8x$; $\displaystyle dv=8dx$; $\displaystyle dx=\frac{1}{8}dv$
$\displaystyle-\frac{1}{4}\int\sin(u)du+\frac{1}{16}\int\sin(v)dv$
$\displaystyle -\frac{1}{4}(-\cos(-2x))+\frac{1}{16}(-\cos(8x))+C$
$\displaystyle \frac{1}{4}\cos(-2x)-\frac{1}{16}\cos(8x)+C$ ---- this is my answer.
the -2x part in this answer is bothering me because in my book it's not negative. please tell me why is that.