MHB Amplitude, Period, frequency and phase angle

Click For Summary
The discussion centers on determining the resulting vibration from two simultaneous vibrations: 2cos(ωt) and 3cos(ωt + π/4). The combined expression simplifies to a form involving both cosine and sine components. The transformation involves using the identities for cosine and sine to express the result in the general form n cos(ωt ± α). The final expression indicates that the values for R and α are complex and not straightforward. The thread emphasizes the need for further calculations to finalize the solution.
jenney
Messages
1
Reaction score
0
HELP!

totally lost and confused with this question:
A machine is subject to two vibrations at the same time.
one vibration has the form: 2cosωt and the other vibration has the form: 3 cos(ωt+0.785). (0.785 is actually expressed as pi/4)
determine the resulting vibration and express it in the general form of: n cos(ωt±α)
 
Mathematics news on Phys.org
jenney said:
HELP!

totally lost and confused with this question:
A machine is subject to two vibrations at the same time.
one vibration has the form: 2cosωt and the other vibration has the form: 3 cos(ωt+0.785). (0.785 is actually expressed as pi/4)
determine the resulting vibration and express it in the general form of: n cos(ωt±α)

$2\cos(\omega t) + 3\cos \left(\omega t + \dfrac{\pi}{4} \right)$

$2\cos(\omega t) + 3\left[\cos(\omega t)\cos\left(\dfrac{\pi}{4}\right) - \sin(\omega t)\sin\left(\dfrac{\pi}{4}\right)\right]$

$2\cos(\omega t) + \dfrac{3\sqrt{2}}{2}\left[\cos(\omega t) - \sin(\omega t)\right]$

$\dfrac{4+3\sqrt{2}}{2}\cos(\omega t) - \dfrac{3\sqrt{2}}{2}\sin(\omega t)$note $A\cos{x} + B\sin{x} = R\cos(x - \alpha)$, where ...

$R = \sqrt{A^2+B^2}$ and $\alpha = \arctan\left(\dfrac{B}{A}\right)$

... see what you can do from here. Note that the values for $R$ and $\alpha$ are not "nice".
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 27 ·
Replies
27
Views
2K
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K