An expression for the vertical velocity as a function of time

AI Thread Summary
The discussion revolves around deriving the vertical velocity of a rocket as a function of time, considering its changing mass due to fuel consumption. The rocket's acceleration is defined as a = T/(m0 - m't) - g, where T is the constant buoyancy and g is the gravitational acceleration. Participants emphasize the importance of understanding the relationship between acceleration and velocity, suggesting that acceleration is the time derivative of velocity. There is a debate on whether to use definite or indefinite integrals for the calculations, with encouragement to try both methods. The overall focus is on guiding individuals to engage actively in solving the physics problem themselves.
Physil
Messages
2
Reaction score
0
New user has been reminded to show their work on schoolwork questions
A rocket of initial mass m0 is launched vertically upwards from the rest. The rocket burns fuel at the constant rate m', in such a way, that, after t seconds, the mass of the rocket is m0-m't. With a constant buoyancy T, the acceleration becomes equal to a=T/(m0-m't) -g. The atmospheric resistance can be neglected, and the gravitational accelereation ,g, is considered a constant for low-level flights. Deduce an expression for the vertical velocity v of the rocket, as a function of time t, before the fuel burns out completely.
 
Physics news on Phys.org
What are your ideas about the problem?
 
We're not here to solve physics problems for you. We're here to help YOU solve them. You have to make an effort towards a solution. If you need a hint to get started, acceleration is the time derivative of velocity.
 
Mister T said:
We're not here to solve physics problems for you. We're here to help YOU solve them. You have to make an effort towards a solution. If you need a hint to get started, acceleration is the time derivative of velocity.
I'm sorry. I new here. That's exactly what I was thinking. I just don't know if I should use definite or indefinite integral.
 
Physil said:
I'm sorry. I new here. That's exactly what I was thinking. I just don't know if I should use definite or indefinite integral.
Why would you use an indefinite integral? Does the integration have a starting point and stopping point?
 
Physil said:
I just don't know if I should use definite or indefinite integral.
Try it both ways and see. It doesn't take that much time.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top