- #1
Juan Comas
- 6
- 2
Hello.
Does anybody know a proof of this formula?
$$J_{2}(e)\equiv\frac{1}{e}\sum_{i=1}^{\infty}\frac{J_{i}(i\cdot e)}{i}\cdot\frac{J_{i+1}((i+1)\cdot e)}{i+1}$$with$$0<e<1$$
We ran into this formula in a project, and think that it is correct. It can be checked successfully with numeric computing programs up to where they can reach, but we have not been able to find a mathematical proof.
Does anybody know a proof of this formula?
$$J_{2}(e)\equiv\frac{1}{e}\sum_{i=1}^{\infty}\frac{J_{i}(i\cdot e)}{i}\cdot\frac{J_{i+1}((i+1)\cdot e)}{i+1}$$with$$0<e<1$$
We ran into this formula in a project, and think that it is correct. It can be checked successfully with numeric computing programs up to where they can reach, but we have not been able to find a mathematical proof.