- #1
Tony1
- 17
- 0
Prove that,
$$\int_{0}^{\pi/2}\ln^2\left(\ln^2 (\sin x)\over \pi^2+\ln^2 (\sin x)\right){\mathrm dx\over \tan x}=\color{blue}{(2\pi)^2\ln 2}$$
$$\int_{0}^{\pi/2}\ln^2\left(\ln^2 (\sin x)\over \pi^2+\ln^2 (\sin x)\right){\mathrm dx\over \tan x}=\color{blue}{(2\pi)^2\ln 2}$$
Last edited: