- #1
lema21
- 18
- 9
- Homework Statement
- If z,w are in C then prove that bar(z/w) = bar(z)/bar(w).
- Relevant Equations
- z = a+bi
w = c+di
Bar(z) = a-bi
Bar(w) = c-di
I need help actually creating the proof. I've done the scratch needed for the problem, it's just forming the proof that I need help in.
Bar(a+bi/c+di)= (a-bi) / (c-di)
Bar ((a+bi/c+di)*(c-di/c-di)) = ((a-bi/c-di)*(c+di/c+di))
Bar((ac+bd/c^2 +d^2)+(i(bc-ad)/c^2+d^2)) = (ac+bd/c^2+d^2)+(i(ad-bc)/(c^2+d^2))
(ac+bd/c^2+d^2) - (i(bc-ad)/c^2+d^2) = (ac+bd/c^2+d^2) + (i(ad-bc)/c^2+d^2)
ibc+iad/ c^2+d^2 = iad-ibc/ c^2+d^2
-ibc+iad=iad-ibc
Bar(a+bi/c+di)= (a-bi) / (c-di)
Bar ((a+bi/c+di)*(c-di/c-di)) = ((a-bi/c-di)*(c+di/c+di))
Bar((ac+bd/c^2 +d^2)+(i(bc-ad)/c^2+d^2)) = (ac+bd/c^2+d^2)+(i(ad-bc)/(c^2+d^2))
(ac+bd/c^2+d^2) - (i(bc-ad)/c^2+d^2) = (ac+bd/c^2+d^2) + (i(ad-bc)/c^2+d^2)
ibc+iad/ c^2+d^2 = iad-ibc/ c^2+d^2
-ibc+iad=iad-ibc