- #1
alexmahone
- 304
- 0
Do the following series converge or diverge?
a) $\displaystyle \sum\frac{1}{n!}\left(\frac{n}{e}\right)^n$
b) $\displaystyle\sum\frac{(-1)^n}{n!}\left(\frac{n}{e}\right)^n$
My attempt:
a) $\displaystyle\frac{1}{n!}\left(\frac{n}{e}\right)^n\approx\frac{1}{\sqrt{2\pi n}}$ (Stirling’s formula)
$\displaystyle \sum\frac{1}{n!}\left(\frac{n}{e}\right)^n\approx \sum\frac{1}{\sqrt{2\pi n}}$
Since $\displaystyle\sum\frac{1}{\sqrt{2\pi n}}$ diverges, $\displaystyle \sum\frac{1}{n!}\left(\frac{n}{e}\right)$ also diverges.
b) $\displaystyle\frac{(-1)^n}{n!}\left(\frac{n}{e}\right)^n\approx\frac{(-1)^n}{\sqrt{2\pi n}}$ (Stirling’s formula)
$\displaystyle \sum\frac{(-1)^n}{n!}\left(\frac{n}{e}\right)^n\approx \sum\frac{(-1)^n}{\sqrt{2\pi n}}$
By Leibniz's test for alternating series, $\displaystyle\sum\frac{(-1)^n}{\sqrt{2\pi n}}$ converges.
So, $\displaystyle\sum\frac{(-1)^n}{n!}\left(\frac{n}{e}\right)^n$ also converges.
a) $\displaystyle \sum\frac{1}{n!}\left(\frac{n}{e}\right)^n$
b) $\displaystyle\sum\frac{(-1)^n}{n!}\left(\frac{n}{e}\right)^n$
My attempt:
a) $\displaystyle\frac{1}{n!}\left(\frac{n}{e}\right)^n\approx\frac{1}{\sqrt{2\pi n}}$ (Stirling’s formula)
$\displaystyle \sum\frac{1}{n!}\left(\frac{n}{e}\right)^n\approx \sum\frac{1}{\sqrt{2\pi n}}$
Since $\displaystyle\sum\frac{1}{\sqrt{2\pi n}}$ diverges, $\displaystyle \sum\frac{1}{n!}\left(\frac{n}{e}\right)$ also diverges.
b) $\displaystyle\frac{(-1)^n}{n!}\left(\frac{n}{e}\right)^n\approx\frac{(-1)^n}{\sqrt{2\pi n}}$ (Stirling’s formula)
$\displaystyle \sum\frac{(-1)^n}{n!}\left(\frac{n}{e}\right)^n\approx \sum\frac{(-1)^n}{\sqrt{2\pi n}}$
By Leibniz's test for alternating series, $\displaystyle\sum\frac{(-1)^n}{\sqrt{2\pi n}}$ converges.
So, $\displaystyle\sum\frac{(-1)^n}{n!}\left(\frac{n}{e}\right)^n$ also converges.
Last edited: