- #1
Dustinsfl
- 2,281
- 5
Suppose traffic is moving uniformly with a constant density $\rho_0$ when a traffic light turns red.
At time $t = 0^+$, the initial density profile is then modeled according to the figure below.
The resulting wave motion of the disturbance is governed by
$$
\frac{\partial\rho}{\partial t} + c(\rho)\frac{\partial\rho}{\partial x} = 0
$$
where
$$
c(\rho) = u_{\text{max}}\left(1 - \frac{2\rho}{\rho_{\text{max}}}\right)
$$Argue that two shocks emanate from the origin and obtain expressions for the shock speed.
From method of characteristics, we have $t=r$ and $x=tu_{\text{max}}\left(1-\frac{2\rho}{\rho_{\text{max}}}\right)+x_0$.
I don't know what to do now.
At time $t = 0^+$, the initial density profile is then modeled according to the figure below.
The resulting wave motion of the disturbance is governed by
$$
\frac{\partial\rho}{\partial t} + c(\rho)\frac{\partial\rho}{\partial x} = 0
$$
where
$$
c(\rho) = u_{\text{max}}\left(1 - \frac{2\rho}{\rho_{\text{max}}}\right)
$$Argue that two shocks emanate from the origin and obtain expressions for the shock speed.
From method of characteristics, we have $t=r$ and $x=tu_{\text{max}}\left(1-\frac{2\rho}{\rho_{\text{max}}}\right)+x_0$.
I don't know what to do now.