- #1
K29
- 108
- 0
Homework Statement
Let [tex]\stackrel{lim}{_{n \rightarrow \infty}}a_{n} = \infty[/tex]
Let [tex]c \in R[/tex]
Prove that
[tex]\stackrel{lim}{_{n \rightarrow \infty}} ca_{n}=[/tex]
[tex]\infty[/tex] for [tex]c>0[/tex] (i)
[tex]- \infty[/tex] for [tex]c<0[/tex] (ii)
[tex] 0 [/tex] for [tex]c=0[/tex] (iii)
Homework Equations
Definition of divergence to infinity (infinite limit at infinity)
[tex] \forall A \in R. \exists K\in R [/tex] such that [tex]a_{n} \geq A, \forall n \geq K[/tex]
The Attempt at a Solution
For the first two cases I just used the above definition and essentially multiplied c by the inequality.
For the c=0 case used the definition for a finite limit:
[tex]\forall \epsilon > 0 \exists K_{\epsilon} \in R[/tex] such that [tex]\forall n \in N, n \geq K_{\epsilon}, |a_{n}-L|<\epsilon[/tex]
Now if I can squeeze [tex]0 \leq |c a_{n}-0| \leq ?=0[/tex] then I'm done
But I can't see an upper limit for the inequality.Stuck there.
Or is there a way to prove this by contradiction instead of the way I've chosen.
Help?
Last edited: