- #1
SkyChurch
I'm stuck on this question: A rock stuck in the tread of a 59.0-{\rm cm}-diameter bicycle wheel has a tangential speed of 3.40 m/s. When the brakes are applied, the rock's tangential deceleration is 1.00 m/s^2.
a) What is the magnitudes of the rock's angular velocity at t = 1.70 s?
b) What is the magnitudes of the rock's angular acceleration at t = 1.70 s?
c) At what time is the magnitude of the rock's acceleration equal to g?
I've only really attempted part a so far and the equations I've used are: a(tangential)=r*a(angular) to find angular acc., v=r*w to find angular speed, and w final=w initial+a(angular)*t to find the angular speed at 1.7 s. I converted the radius, 29.5cm, to .295m and I'm getting 5.76 rad/s which is wrong. Where am I going wrong?
a) What is the magnitudes of the rock's angular velocity at t = 1.70 s?
b) What is the magnitudes of the rock's angular acceleration at t = 1.70 s?
c) At what time is the magnitude of the rock's acceleration equal to g?
I've only really attempted part a so far and the equations I've used are: a(tangential)=r*a(angular) to find angular acc., v=r*w to find angular speed, and w final=w initial+a(angular)*t to find the angular speed at 1.7 s. I converted the radius, 29.5cm, to .295m and I'm getting 5.76 rad/s which is wrong. Where am I going wrong?