- #1
xokaitt
- 6
- 0
Homework Statement
Let f(x,y)=Ax2+E where A and E are constants. What are the critical points of f(x,y)? Determine whether the critical points are local maxima, local minema, or saddle points.
2. The attempt at a solution
First I found the first partial derivatives with respect to x and y
[tex]\partial[/tex]f/[tex]\partial[/tex]x=2Ax
[tex]\partial[/tex]f/[tex]\partial[/tex]y=0
[tex]\Rightarrow[/tex] 2Ax=0,
[tex]\Rightarrow[/tex] x=0 for any constant A.
Therefore, all points lying on the y-axis are critical points.
(i.e. C.P.'s = (0,n), n[tex]\in[/tex]R.)
Now, we have to find the second partial's with respect to x and y.
[tex]\partial[/tex]2f/[tex]\partial[/tex]x2=2A
[tex]\partial[/tex]2f/[tex]\partial[/tex]y2=0
and
[tex]\partial[/tex]2f/[tex]\partial[/tex]x[tex]\partial[/tex]y=0
Therefore Df=([tex]\partial[/tex]2f/[tex]\partial[/tex]x2)([tex]\partial[/tex]2f/[tex]\partial[/tex]y2)-([tex]\partial[/tex]2f/[tex]\partial[/tex]x[tex]\partial[/tex]y)2 at (0,n) , n[tex]\in[/tex]R.
[tex]\Rightarrow[/tex] Df=(2A)(0)-(0)2=0
This is where I get stuck. Now that Df=0, how do I determine whether or not the critical pts are local extrema or saddle pts?
From plotting the function on Mathematica, I know that these critical points are in fact saddle points, but I don't know how to mathematically state that.
Thanks!