MHB Angelina Lopez's questions at Yahoo Answers regarding definite integrals

AI Thread Summary
Angelina Lopez's questions on Yahoo Answers focus on solving calculus integral problems. The first question involves using the Midpoint Rule to approximate the integral of f(x) = 1/x from 1 to 3 with four sub-intervals, leading to a calculated approximation of 3776/3465. The second question pertains to finding the integral of a continuous even function f(x) from -2 to -6, given specific integral values; the solution reveals that this integral equals -106. The discussion includes detailed calculations and explanations for both problems, demonstrating the application of integral calculus concepts. Overall, the thread provides valuable insights into solving definite integrals using different methods.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Calculus integral problems. Please help I would appreciate.?


1. Consider f(x)= 1/x on [1,3]. Use four sub-intervals to approximate the integral from 1 to 3 f(x)dx by using the Midpoint Rule.

2. Suppose f(x) is a continuous even function and that the integral from 0 to 6 f(x)dx=96 and the integral from 0 to -2 f(x)dx =10. Find the integral from -2 to -6 f(x)dx.

I have posted a link there to this thread so the OP can see my work.
 
Mathematics news on Phys.org
Hello Angelina Lopez,

1.) The Midpoint Rule is the approximation $$\int_a^b f(x)\,dx\approx M_n$$ where:

$$M_n=\frac{b-a}{n}\left(f\left(\frac{x_0+x_1}{2} \right)+f\left(\frac{x_1+x_2}{2} \right)+\cdots+f\left(\frac{x_{n-1}+x_n}{2} \right) \right)$$

In our case, we have:

$$a=1,\,b=3,\,n=4,\,f(x)=\frac{1}{x},\,x_k=a+\frac{b-a}{n}k=\frac{k+2}{2}$$

Hence:

$$\frac{x_{k-1}+x_k}{2}=\frac{\dfrac{(k-1)+2}{2}+\dfrac{k+2}{2}}{2}=\frac{2k+3}{4}$$

and so:

$$f\left(\frac{x_{k-1}+x_k}{2} \right)=\frac{4}{2k+3}$$

Thus:

$$M_4=\frac{3-1}{4}\sum_{k=1}^4\left(\frac{4}{2k+3} \right)=2\sum_{k=1}^4\left(\frac{1}{2k+3} \right)$$

$$M_4=2\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+ \frac{1}{11} \right)=\frac{3776}{3465}$$

2.) We are given:

(1) $$f(-x)=f(x)$$

(2) $$\int_0^6 f(x)\,dx=96$$

(3) $$\int_0^{-2} f(x)\,dx=10$$

and we are asked to find:

$$\int_{-2}^{-6} f(x)\,dx$$

From (1) and (2) we know:

$$\int_{-6}^{0} f(x)\,dx=96$$

which we may write as:

$$\int_{-6}^{-2} f(x)\,dx+\int_{-2}^{0} f(x)\,dx=96$$

Using $$\int_a^b g(x)\,dx=-\int_b^a g(x)\,dx$$ this becomes:

$$-\int_{-2}^{-6} f(x)\,dx-\int_{0}^{-2} f(x)\,dx=96$$

Using (3), we obtain:

$$-\int_{-6}^{-2} f(x)\,dx-10=96$$

Hence:

$$\int_{-6}^{-2} f(x)\,dx=-106$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top