- #1
NihalRi
- 134
- 12
I am trying to understand how a blazed diffraction grating works and came across a deduction I don't understand. I believe that you don't need to know much about optics to answer this question as it is more geometry related.
I have the diagram below of a diffraction grating with all the relevant angles labeled.
The blue zag is a zoom in of the diffraction grating surface. A beam (orange arrow on left) is hitting a face on the surfaces and reflecting (orange arrow on right) relative to normal of the face which is the dotted line between the arrows.
The deduction made is that θi - θr = 2γ and I can't seem to deduce this. I'll be happy to provide any additional information and any help will be appreciated.
I have the diagram below of a diffraction grating with all the relevant angles labeled.
The blue zag is a zoom in of the diffraction grating surface. A beam (orange arrow on left) is hitting a face on the surfaces and reflecting (orange arrow on right) relative to normal of the face which is the dotted line between the arrows.
The deduction made is that θi - θr = 2γ and I can't seem to deduce this. I'll be happy to provide any additional information and any help will be appreciated.