- #1
therayne
- 5
- 0
Homework Statement
The rod is at rest and is released, what is the angular acceleration immediately after release? The pivot is frictionless, gravity is 9.8 m/s^2.
Homework Equations
Icm = (1/12)ML^2 => Inertia at center of mass, this was given in the problem, i don't think it's necessary though
Iend = (1/3)ML^2 => at pivot end, this was also given in the problem and i confirmed it with the parallel axis theorem
t = rF*sin(A) =>torque, r is the radius(half the total length L), and F is the force of gravity(m*g)
[tex]\alpha[/tex] = t/I =>ang accel
The Attempt at a Solution
t = rMg*sin(A)
[tex]\alpha[/tex] = (rMg*sin(A)) / ((1/3)ML^2))
since r is half the length of the total length L, i can say L = 2r
[tex]\alpha[/tex] = (rMg*sin(A)) / ((1/3)M(2r)^2))
[tex]\alpha[/tex] = (3rg*sin(A))/ (4r^2) => 'M's cancel out, (1/3) on bottom becomes 3 on top
[tex]\alpha[/tex] = (3g*sin(A))/ (4r) =>simplify 'r'sIs that the right process? I keep getting the wrong answer.
The angular acceleration should be positive right? I know for translational motion, when an object is speeding up it's acceleration is positive, when an object is slowing down it has negative acceleration, and when the rate of change of the speed is constant, the acceleration is 0. So it should be the same for angular acceleration right?
Btw: Is there a way to put LaTeX inside LaTeX code? I was trying to put the greek lower case letter "tau" inside fraction operation for alpha = tau / I but I kept getting an error.
Last edited: