- #1
Dell
- 590
- 0
a block with a mass of m=10kg is connected to a pulley with a mass of M=2.5kg and a radius of R=0.5m. what is
1) the angular acceleration of the pulley
2) the acceleration of the block
3) the tension in the rope connecting them?
-----------------------------------------------
equations
F=ma
I[tex]\alpha[/tex]=|FR|sin
a=[tex]\alpha[/tex]R
------------------------------------------------
my attempt
1)I[tex]\alpha[/tex]=|FR|sin
the angle between the radius and the force (the rope) is 90 degrees, sin90=1
I[tex]\alpha[/tex]=|TR|
I=0.5MR[tex]^{2}[/tex]
using Newtons 2nd law on the block mg-T=ma,=> T=m(g-a)
[tex]\alpha[/tex]=|TR|/I
=[tex]\frac{mR(g-a)}{0.5MR^{2}}[/tex]
=[tex]\frac{2m(g-a)}{MR}[/tex]
a=[tex]\alpha[/tex]R
[tex]\alpha[/tex]=[tex]\frac{2m(g-[tex]\alpha[/tex]R)}{MR}[/tex]
[tex]\alpha[/tex]MR=2mg-2m[tex]\alpha[/tex]R
[tex]\alpha[/tex](MR+2mR)=2mg
[tex]\alpha[/tex]=[tex]\frac{2mg}{R(M+2m)}[/tex]
plug in the numbers, and i get [tex]\alpha[/tex]= [tex]\frac{160}{9}[/tex] rad/s[tex]^{2}[/tex]
2) to find the acceleration of the block, a
a=[tex]\alpha[/tex]R=[tex]\frac{2mg}{(M+2m)}[/tex]=[tex]\frac{80}{9}[/tex]m/s[tex]^{2}[/tex]
3) to find the tension in the rope, using Newtons 2nd law on the block mg-T=ma,=> T=m(g-a) using the a i found in 2)
T=m(g-[tex]\frac{2mg}{(M+2m)}[/tex])=100/9 N
are these workings correct??
the answers are all correct except the answer for 3) which my book says T=800/9
1) the angular acceleration of the pulley
2) the acceleration of the block
3) the tension in the rope connecting them?
-----------------------------------------------
equations
F=ma
I[tex]\alpha[/tex]=|FR|sin
a=[tex]\alpha[/tex]R
------------------------------------------------
my attempt
1)I[tex]\alpha[/tex]=|FR|sin
the angle between the radius and the force (the rope) is 90 degrees, sin90=1
I[tex]\alpha[/tex]=|TR|
I=0.5MR[tex]^{2}[/tex]
using Newtons 2nd law on the block mg-T=ma,=> T=m(g-a)
[tex]\alpha[/tex]=|TR|/I
=[tex]\frac{mR(g-a)}{0.5MR^{2}}[/tex]
=[tex]\frac{2m(g-a)}{MR}[/tex]
a=[tex]\alpha[/tex]R
[tex]\alpha[/tex]=[tex]\frac{2m(g-[tex]\alpha[/tex]R)}{MR}[/tex]
[tex]\alpha[/tex]MR=2mg-2m[tex]\alpha[/tex]R
[tex]\alpha[/tex](MR+2mR)=2mg
[tex]\alpha[/tex]=[tex]\frac{2mg}{R(M+2m)}[/tex]
plug in the numbers, and i get [tex]\alpha[/tex]= [tex]\frac{160}{9}[/tex] rad/s[tex]^{2}[/tex]
2) to find the acceleration of the block, a
a=[tex]\alpha[/tex]R=[tex]\frac{2mg}{(M+2m)}[/tex]=[tex]\frac{80}{9}[/tex]m/s[tex]^{2}[/tex]
3) to find the tension in the rope, using Newtons 2nd law on the block mg-T=ma,=> T=m(g-a) using the a i found in 2)
T=m(g-[tex]\frac{2mg}{(M+2m)}[/tex])=100/9 N
are these workings correct??
the answers are all correct except the answer for 3) which my book says T=800/9