I Angular momentum and rotations

Kashmir
Messages
466
Reaction score
74
Cohen tannoudji. Vol 1.pg 702"Now, let us consider an infinitesimal rotation ##\mathscr{R}_{\mathbf{e}_z}(\mathrm{~d} \alpha)## about the ##O z## axis. Since the group law is conserved for infinitesimal rotations, the operator ##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)## is necessarily of the form: $$ R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z $$ where ##J_z## is a Hermitian operator since ##R_{\mathbf{e}_z}\left(\mathrm{~d} \alpha\right.## ) is unitary (cf. Complement ##\mathrm{C}_{\mathrm{II}}, \S 3## ). This relation is the definition of ##J_z##."

Why is it that; Since the group law is conserved for infinitesimal rotations, the operator ##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)## is necessarily of the form: $$ R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z $$ where ##J_z## is a Hermitian operator?
 
Physics news on Phys.org
Unitarity of ##R \equiv R_{e_z}## means
$$R R^{\dagger}=(1-\mathrm{i} \mathrm{d} \alpha J_z)(1+\mathrm{i} \mathrm{d} \alpha) J_z^{\dagger} = 1 -\mathrm{i} \mathrm{d} \alpha (J_z - J_z^{\dagger}) + \mathcal{O}(\mathrm{d} \alpha^2) \stackrel{!}{=} 1 + \mathcal{O}(\mathrm{d} \alpha^2) \; \Rightarrow \; J_z=J_z^{\dagger}.$$
 
  • Like
Likes Omega0, Kashmir, topsquark and 1 other person
vanhees71 said:
Unitarity of ##R \equiv R_{e_z}## means
$$R R^{\dagger}=(1-\mathrm{i} \mathrm{d} \alpha J_z)(1+\mathrm{i} \mathrm{d} \alpha) J_z^{\dagger} = 1 -\mathrm{i} \mathrm{d} \alpha (J_z - J_z^{\dagger}) + \mathcal{O}(\mathrm{d} \alpha^2) \stackrel{!}{=} 1 + \mathcal{O}(\mathrm{d} \alpha^2) \; \Rightarrow \; J_z=J_z^{\dagger}.$$
I was trying to ask about why does
The group law being conserved for infinitesimal rotations imply that

##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z## . Why does it necessarily have this form
 
... because this is the infinitesimal generator relative to an virtual z axis? Is your question like "why is the Taylor expansion of the e function is at it is.."?
 
Kashmir said:
I was trying to ask about why does
The group law being conserved for infinitesimal rotations imply that

##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z## . Why does it necessarily have this form
Every operator parameterized by an infinitesimal has that form. The group law implies ##J_z## is Hermitian. That's the point.
 
Last edited:
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Back
Top