Angular Momentum of a Particle Confusion

In summary, the angular momentum for a particle can be calculated using the equation L = r x p, while for a rigid body, the equation L = Iw must be used. The pulley is treated as a rigid body, and when calculating its angular velocity, the tangential velocity must be used. This can be obtained by summing the contribution of all particles of the rigid body using the fact that the angular frequency is the same for all of them.
  • #1
Speedking96
104
0

Homework Statement



I was reading the textbook section on angular momentum, and I'm having some difficulty grasping angular momentum.

Here is a question:

upload_2014-12-12_22-9-24.png


In the book, it says that the angular momentum L is equal to vector r cross vector p for a particle. But, for a rigid body, the equation is L = Iw.

In this case, why isn't the pulley treated as a rigid object. Does this mean that you can take the cross product to find the angular momentum in any case?

If someone could please clarify this. Thank you.
 

Attachments

  • upload_2014-12-12_22-9-9.png
    upload_2014-12-12_22-9-9.png
    4.6 KB · Views: 427
Physics news on Phys.org
  • #2
L=r×p ::this equation means rotational
Angular momentum is the. Moment of linear momentum.
L=Iw:: this is analogous to p=MV.but
Thing to be remembered is I can be found for rigid body only. If body is non rigid we have to find L of each particle at any
Instance and add. So this equation is used generally for rigid bodies only. That doesn't imply u can't use the first equation for rigid bodies. only you should be carefull about taking correct value of r .
 
  • Like
Likes Speedking96
  • #3
Speedking96 said:
In this case, why isn't the pulley treated as a rigid object. Does this mean that you can take the cross product to find the angular momentum in any case?

If someone could please clarify this. Thank you.
The pulley is treated as a rigid body. What is the angular momentum for a ring? How is the angular velocity of the pulley related to the linear velocity of its rim?
 
  • #4
For an assembly of particles ##\vec L = \Sigma {\vec r_i \times \vec p_i} = \Sigma {m_i \vec r_i \times \vec v_i}##. For a rigid body rotating with vector ##\vec \omega##, ##\vec v_i= \vec \omega \times \vec r_i ##, so ##\vec L = \Sigma {m_i \vec r_i \times (\vec \omega \times \vec r_i)}##. If ##\vec s_i## is the component of ##\vec r_i## orthogonal to ##\omega##, this reduces to ##\vec L = \Sigma {m_i (\vec s_i^2) \vec \omega} = \vec \omega\Sigma {m_i (\vec s_i^2)} = \vec \omega I##
 
  • Like
Likes Speedking96
  • #5
ehild said:
The pulley is treated as a rigid body. What is the angular momentum for a ring? How is the angular velocity of the pulley related to the linear velocity of its rim?
When pulley is treated as rigid body and if you know linear velocity if any point ,then divide that velocity with perpendicular distance from axis of rotation and you'll get angular velocity.
 
  • #6
@vishnu: I asked the OP, as I wanted him to answer his own question. Do not answer instead of him.
 
  • #7
ehild said:
@vishnu: I asked the OP, as I wanted him to answer his own question. Do not answer instead of him.
Ooops
 
  • #8
ehild said:
The pulley is treated as a rigid body. What is the angular momentum for a ring? How is the angular velocity of the pulley related to the linear velocity of its rim?

The angular momentum for a ring is MR2.

Since a ring is a rigid body, it's angular momentum is I = lw = (MR2)(w) = (MR2)(v/r) = mvr

Ok, I see.

So from what I can understand from the posts above, you can use r x p for a particle, or for a sum of particles, but for a rigid body, you must use I = Iw.

And, when the velocity used in the calculations must be the tangential velocity.

Is this correct?
 
  • #9
Speedking96 said:
So from what I can understand from the posts above, you can use r x p for a particle, or for a sum of particles, but for a rigid body, you must use I = Iw.

And, when the velocity used in the calculations must be the tangential velocity.

Is this correct?
Yes, L=Iw. And you get it by summing (integrating) the contribution rxp of all particles of that rigid body, using the fact that the angular frequency is the same for all of them.
 
  • Like
Likes Speedking96
  • #10
Thank you.
 

FAQ: Angular Momentum of a Particle Confusion

What is angular momentum?

Angular momentum is a physical property of a particle that describes its rotational motion around a fixed point. It is a vector quantity that depends on the particle's mass, velocity, and distance from the fixed point.

How is angular momentum different from linear momentum?

Angular momentum deals with rotational motion, while linear momentum deals with the motion of an object in a straight line. Angular momentum is also a vector quantity, while linear momentum is a scalar quantity.

How is angular momentum calculated?

The formula for angular momentum is L = Iω, where L is the angular momentum, I is the moment of inertia of the particle, and ω is the angular velocity. It can also be calculated as L = r x p, where r is the position vector and p is the linear momentum.

What is the conservation of angular momentum?

The conservation of angular momentum states that the total angular momentum of a system remains constant as long as there are no external torques acting on the system. This means that if the angular momentum of one particle in a system changes, another particle's angular momentum must change in the opposite direction to maintain the total angular momentum.

How does angular momentum affect the motion of a particle?

The angular momentum of a particle affects its rotational motion around a fixed point. A change in angular momentum will result in a change in the particle's rotational speed or direction. Additionally, the conservation of angular momentum can also be used to explain certain phenomena, such as the conservation of spin in quantum mechanics.

Similar threads

Replies
2
Views
1K
Replies
7
Views
2K
Replies
9
Views
4K
Replies
7
Views
2K
Replies
6
Views
2K
Back
Top