- #1
BroPro
- 2
- 0
- Homework Statement
- Hi! See attached below a question from Kleppner's Intro to Mechanics. I calculated the angular momentum using ##\mathbf L=M \mathbf R \times \mathbf V + \mathbf L_{cm}##, where ##\mathbf L_{cm}## is the angular momentum about the center of mass, but I got a different answer than the official solution.
I think both answers are correct: I calculated the angular momentum about the origin showed in the diagram, while (I think) the official solution implicitly calculated the angular momentum about the point of contact between the axle and the z axis. Is this correct? Yet it's strange for me that the angular momentum on the y axis cancels out: is this a mistake on my part, or really what happens? Why does it cancel out?
- Relevant Equations
- ##\mathbf L=M \mathbf R \times \mathbf V + \mathbf L_{cm}##
Problem:
Official solution:
My calculation:
\begin{align*}
\mathbf L &= M \mathbf R \times \mathbf V + \mathbf L_{cm} \\
&= M R (\hat j + \hat k) \times (- \Omega R \hat i) + MR^2 \Omega \hat j \\
&= MR^2 \Omega (\hat k - \hat j + \hat j) \\
&= MR^2 \Omega \hat k
\end{align*}
Official solution:
My calculation:
\begin{align*}
\mathbf L &= M \mathbf R \times \mathbf V + \mathbf L_{cm} \\
&= M R (\hat j + \hat k) \times (- \Omega R \hat i) + MR^2 \Omega \hat j \\
&= MR^2 \Omega (\hat k - \hat j + \hat j) \\
&= MR^2 \Omega \hat k
\end{align*}