- #1
hhjjy
- 13
- 6
- Homework Statement
- A particle of mass m moves in a circle of radius R at a constant speed v, as shown in Figure P11.4. If the motion begins at point Q at time t = 0, determine the angular momentum of the particle about point P as a function of time.
- Relevant Equations
- $$ L = \vec{r} \times \vec{p} $$
I don't understand why my solution is wrong.
Here is my solution.
$$ r_{\theta} = R\cos{\theta} \vec{i} + R\sin{\theta} \vec{j} $$
$$ v_{\theta} = v\cos(\theta + \frac{\pi}{2}) \vec{i} + v\sin(\theta + \frac{\pi}{2}) \vec{j} $$
$$ p_{\theta} = mvR(-\sin{\theta}) \vec{i} +mvR(\cos{\theta} \vec{j}) $$
$$ L_{\theta} = \vec{r} \times \vec{p}=mvR (-{\sin{\theta}}^2 + {\cos{\theta}}^2 )\vec{k} $$
$$ L_{\theta} = mvR(\cos{2\theta}) $$
Can someone explain for me?
Here is my solution.
$$ r_{\theta} = R\cos{\theta} \vec{i} + R\sin{\theta} \vec{j} $$
$$ v_{\theta} = v\cos(\theta + \frac{\pi}{2}) \vec{i} + v\sin(\theta + \frac{\pi}{2}) \vec{j} $$
$$ p_{\theta} = mvR(-\sin{\theta}) \vec{i} +mvR(\cos{\theta} \vec{j}) $$
$$ L_{\theta} = \vec{r} \times \vec{p}=mvR (-{\sin{\theta}}^2 + {\cos{\theta}}^2 )\vec{k} $$
$$ L_{\theta} = mvR(\cos{2\theta}) $$
Can someone explain for me?
Last edited: