MHB Angular speed of 2 pulleys on a belt

AI Thread Summary
The discussion focuses on calculating the angular speed of two pulleys connected by a belt, with radii of 15 cm and 8 cm. The larger pulley rotates 25 times in 36 seconds, resulting in an angular speed of approximately 4.36 radians per second. Since the pulleys are linked by a belt, their linear velocities are equal, allowing the use of the formula v = rω to find the angular speed of the smaller pulley. By applying the relationship between the radii and angular speeds, the angular speed of the 8 cm pulley is calculated to be approximately 8.24 radians per second. The calculations demonstrate the principles of rotational motion and the relationship between radius and angular speed.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
two pulleys connected by a belt have 15cm and 8cm radius

The larger pulley rotates $25$ times in $36$ sec,

Find the angular speed of each pulleey in radians per second.

the 15cm pulley has circumferce of $30\pi$ so

$\displaystyle\frac{25\text { rev}}{36 \text {sec}}
\cdot\frac{30\pi\text{ cm}}{ rev}
=\frac{750\text{ cm\pi}}{36\text {sec}}
=\frac{65.5\text{ cm}\text{ rad}}{\text{sec}}$

not sure how to get the v of the $$ 8cm $$ pulley
 
Last edited:
Mathematics news on Phys.org
Re: angular speed of 2 pulleys on a belt

This is how I would work the first part:

$$\frac{25\text{ rev}}{36\text{ s}}\cdot\frac{2\pi\text{ rad}}{1\text{ rev}}=\frac{25}{18}\pi\frac{\text{rad}}{\text{s}}$$

Angular speed should have units of radians/time.

Since the pulleys are connected by a belt, then the linear velocity of the outer edge of each pulley will be the same:

$$v_2=v_1$$

Using, $$v=r\omega$$, we may state:

$$r_2\omega_2=r_1\omega_1$$

Solve for $$\omega_2$$:

$$\omega_2=\frac{r_1}{r_2}\omega_1$$

Now let $$r_1=15\text{ cm},\,r_2=8\text{ cm},\,\omega_1=\frac{25}{18}\pi\frac{ \text{rad}}{\text{s}}$$

What do you find?
 
Re: angular speed of 2 pulleys on a belt

$\displaystyle\frac{15}{8}\cdot\frac{25}{18}\pi \text{ = } \frac{125}{48}\pi\ \frac{\text{rad}}{s}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
2
Views
7K
Replies
4
Views
2K
Replies
3
Views
2K
Replies
2
Views
3K
Replies
11
Views
3K
Replies
2
Views
1K
Replies
6
Views
4K
Back
Top