- #1
faust9
- 692
- 2
Ok, did I do this correctly?
The question goes:
Determine the angular velocity and angular acceleration of the disk and the link AB at the instant A rotates through 90 degrees.
See attachment for the figure.
What I did--first the disk:
Assuming [itex]\alpha_{disk}[/itex] is constant
[tex]
\alpha_{disk}=\alpha_0=\alpha_{90}=6\frac{rad}{s^2}
[/tex]
[tex]
\omega_{90}^2=\omega_{0}^2+2\alpha(\theta_{90}-\theta_{0})
[/tex]
[tex]
\omega_{90}=\sqrt{(5\frac{rad}{s})^2+2(6\frac{rad}{s^2})(\frac{\pi}{2})}=6.622\frac{rad}{s}[/tex]
So, angular velocity of the disk is 6.622 rad/s, and angular acceleration of the disk is 5 rad/s^2.
Now for the link:
[tex]
\vec{v}_A=\vec{ \omega }\times \vec{r}_A
[/tex]
[tex]
\vec{v}_A=\omega(r_A)i=6.622\frac{rad}{s}(0.5\frac{ft}{rad})=3.311\frac{ft}{s}i
[/tex]
[tex]
\vec{v}_B=\vec{v}_A+\vec{ \omega }\times \vec{r}_{B/A}
[/tex]
Used trig to find this:
[tex]
\vec{r}_{B/A}=2\cos 19i+2\sin 19j
[/tex]
[tex]\vec{v}_B=3.311i+\omega(0.652i-1.891j)[/tex]
[tex]
v_bi=3.311i+0.652\omega i
[/tex]
[tex]
v_bj=-1.891\omega j
[/tex]
solve simultaneously and I get:
[tex]
\omega=-1.302\frac{rad}{s}
[/tex]
Is this right thus far?
[edit]forgot picture
The question goes:
Determine the angular velocity and angular acceleration of the disk and the link AB at the instant A rotates through 90 degrees.
See attachment for the figure.
What I did--first the disk:
Assuming [itex]\alpha_{disk}[/itex] is constant
[tex]
\alpha_{disk}=\alpha_0=\alpha_{90}=6\frac{rad}{s^2}
[/tex]
[tex]
\omega_{90}^2=\omega_{0}^2+2\alpha(\theta_{90}-\theta_{0})
[/tex]
[tex]
\omega_{90}=\sqrt{(5\frac{rad}{s})^2+2(6\frac{rad}{s^2})(\frac{\pi}{2})}=6.622\frac{rad}{s}[/tex]
So, angular velocity of the disk is 6.622 rad/s, and angular acceleration of the disk is 5 rad/s^2.
Now for the link:
[tex]
\vec{v}_A=\vec{ \omega }\times \vec{r}_A
[/tex]
[tex]
\vec{v}_A=\omega(r_A)i=6.622\frac{rad}{s}(0.5\frac{ft}{rad})=3.311\frac{ft}{s}i
[/tex]
[tex]
\vec{v}_B=\vec{v}_A+\vec{ \omega }\times \vec{r}_{B/A}
[/tex]
Used trig to find this:
[tex]
\vec{r}_{B/A}=2\cos 19i+2\sin 19j
[/tex]
[tex]\vec{v}_B=3.311i+\omega(0.652i-1.891j)[/tex]
[tex]
v_bi=3.311i+0.652\omega i
[/tex]
[tex]
v_bj=-1.891\omega j
[/tex]
solve simultaneously and I get:
[tex]
\omega=-1.302\frac{rad}{s}
[/tex]
Is this right thus far?
[edit]forgot picture
Attachments
Last edited: