- #1
captainjack2000
- 99
- 0
1. A mass m is moving with velocity v. it then collids with the end of a rigid rod perpendicular to its intial path. They stick together. The other end of the rod is attached to a frictionless hinge which allows it to rotate in any direction. rod mass = M length = l
What is the angular velocity of the particle rod system after impact?
3. Initally the only angular momentum would be L = mvl
angular momentum is conserved so the intial L = final L
I am a bit confused about how to find the final L?
L=rmv
L = Iw(for the rod) +mwl for the particle?
I for the rod = MR^(2) / 3
What is the angular velocity of the particle rod system after impact?
3. Initally the only angular momentum would be L = mvl
angular momentum is conserved so the intial L = final L
I am a bit confused about how to find the final L?
L=rmv
L = Iw(for the rod) +mwl for the particle?
I for the rod = MR^(2) / 3