- #1
thatstheguy9
- 14
- 3
- Homework Statement
- Determine the angular velocity of Pulley B and C
- Relevant Equations
- ## V = \omega r ##
So far I have:
The velocity of the belt will be the same for pully A and D, so we can calculate the angular velocity of pulley D:
## V_A = V_B ##
## \omega_A r_A = \omega_D r_D ##
## ((20*3)+40)(0.075) = \omega_D (0.025) ##
## \omega_D = 300 Rad/s ##
My next step was to determine the angular velocity of pulley B. My thought was because pully B and pulley D are joined on the same shaft they must have the same velocity.
I determined ## \omega_B = 75 Rad/s ##.
However the solution found ## \omega_B = 300 Rad/s ##.
I don't understand how the larger pulley can have a higher velocity than the smaller pulley. Or why the velocity of pulley A is the same as pulley B. Can someone explain this?
Last edited: