- #1
nomadreid
Gold Member
- 1,726
- 228
OK, this is embarrassing, but I never looked carefully at this elementary point. We say that if
p implies q
P is the set of all things for which p is true
Q is the set of all things for which q is true
then Q ⊆ P.
Also that the set of all things for which p&q is true equals P∩Q
But p & q implies p, so (from the above) P ⊆ P ∩ Q, which is in general false.
What is wrong?
Thanks
p implies q
P is the set of all things for which p is true
Q is the set of all things for which q is true
then Q ⊆ P.
Also that the set of all things for which p&q is true equals P∩Q
But p & q implies p, so (from the above) P ⊆ P ∩ Q, which is in general false.
What is wrong?
Thanks