- #1
Zula110100100
- 253
- 0
Homework Statement
[itex]\displaystyle{r^{2}\int^{\arcsin\frac{r}{t}}_{0^{+}}\frac{\sqrt{2}\sin(\theta-\frac{\pi}{4})\sin(2\arcsin(\frac{t}{r}\sin\theta))}{1-\cos(2\theta)}d\theta + \int^{\arcsin\frac{r}{t}}_{0^{+}}\frac{\cos(\frac{\pi}{4}-\theta)}{1-\cos(2\theta)}d\theta - \int^{\arcsin\frac{r}{t}}_{0^{+}}\arcsin(\frac{t}{r}\sin\theta)d\theta + \int^{\arcsin\frac{r}{t}}_{0^{+}}d\theta}[/itex]
[itex] t = \sqrt{2}, r = 1[/itex]
This is once again beyond my skills for quite some time I imagine, but I am extremely curious to know the answer. The number empire integral calculator gives me that the second term approaches -∞ as theta approaches 0. Does this mean then that with 0+ I wind up with -∞ as the answer still? Or since the change in theta gets smaller too does it depend on the derivative? How do I find if there is a lower limit?