Another distribution problem....

In summary, the geometric distribution is when $\displaystyle \frac{\mu}{(1+\mu)^{k+1}}=\frac{\mu}{1+\mu}\cdot \left(1-\frac{\mu}{1+\mu}\right)^k$
  • #1
Jason4
28
0
I just have this one last question. Could somebody give me a push; not really sure how to start:

Let: $A|B\sim \text{Pois.}(B)$ and $B\sim \text{Exp.}(\mu)$.

I need to find the distribution of $A$
 
Physics news on Phys.org
  • #2
Hello,

There are three things to know.
First of all, A will have a discrete distribution : it's essentially a Poisson distribution.
Then there are 2 formulas/properties to know.
When we have $\displaystyle P(A=k)$, it's like writing $\displaystyle E[1_{\{A=k\}}]$ where the 1 function is the indicator function.
And finally, $\displaystyle E[E[X|B]]=E[X]$, where X and B are any random variables.

So here, we'll have :
$\displaystyle P(A=k)=E[1_{\{A=k\}}]=E[E[1_{\{A=k\}}|B]]=E[P(A=k|B)]=E\left[e^{-B}\cdot\frac{B^k}{k!}\right]$.

Then you just have to compute this expectation, given that B has an exponential distribution, and you're done. If you encounter any difficulty with this part, please post what you've tried and we'll help :)
 
  • #3
I decided to sleep on it, and now none of it makes sense. Should I be looking for something along the lines of:

$\displaystyle\sum_{k=0}^{\infty}e^{-B}\frac{B^k}{k!}$
 
  • #4
An exponential distribution is continuous. Its pdf is $\mu e^{-\mu b}$
So the expectation you're looking for is just $\displaystyle \int_0^\infty \mu e^{-\mu b}\cdot e^{-b}\cdot\frac{b^k}{k!} ~db$, where k is a constant.
If you didn't know this formula, I'll explain it later, I have to go sleep​
 
  • #5
Something like this?

$g(B)=e^{-B}\frac{B^k}{k!}$

$\Rightarrow E(g(B))=\displaystyle\int_{-\infty}^{\infty}g(b)f_B(b)db$

$=\displaystyle\int_{0}^{\infty}e^{-b}\frac{b^k}{k!}\mu e^{-\mu b}db$

$=\frac{\mu}{k!}\displaystyle\int_{0}^{\infty}b^ke^{-b(1+\mu)} db$

$=\frac{\mu}{k!}(0-(-1))=\frac{\mu}{k!}$

erm... ?
 
Last edited:
  • #6
Jason said:
Something like this?

$g(B)=e^{-B}\frac{B^k}{k!}$

$\Rightarrow E(g(B))=\displaystyle\int_{-\infty}^{\infty}g(b)f_B(b)db$

$=\displaystyle\int_{0}^{\infty}e^{-b}\frac{b^k}{k!}\mu e^{-\mu b}db$

$=\frac{\mu}{k!}\displaystyle\int_{0}^{\infty}b^ke^{-b(1+\mu)} db$

$=\frac{\mu}{k!}(0-(-1))=\frac{\mu}{k!}$

erm... ?
That's exactly it for the formula !

But your computation of the integral isn't correct.

Recall that k is a positive integer and that $\displaystyle k!=\Gamma(k+1)=\int_0^\infty e^{-t} t^k ~dt$

Make the proper substitution to get $e^{-b(1+\mu)}$ instead of $e^{-t}$ and it'll be all good ! :) I think it gives a geometric distribution, but I don't have time doing the whole computation (which shouldn't be too long by the way).

Good luck :p
 
  • #7
Gamma functions?! Haven't done this before...

$=\frac{\mu}{k!}\displaystyle\int_{0}^{\infty}b^ke ^{-(1+\mu)b} db$

$=\frac{u}{k!} \frac {\Gamma (k+1)}{(1+u)^{k+1}}$

$=\frac{u}{(1+u)^{k+1}}$

(Wondering)
 
  • #8
Jason said:
Gamma functions?! Haven't done this before...

$=\frac{\mu}{k!}\displaystyle\int_{0}^{\infty}b^ke ^{-(1+\mu)b} db$

$=\frac{u}{k!} \frac {\Gamma (k+1)}{(1+u)^{k+1}}$

$=\frac{u}{(1+u)^{k+1}}$

(Wondering)
Well if you want to compute it without mentioning gamma function, it's possible, but you'd have to do successive integrations by parts.
But this is indeed the solution.

And you'd recognize a geometric distribution because : $\displaystyle \frac{\mu}{(1+\mu)^{k+1}}=\frac{\mu}{1+\mu}\cdot \left(1-\frac{\mu}{1+\mu}\right)^k$
 
  • #9
Oh, so at least it's right then (I hate integration by parts).
 

FAQ: Another distribution problem....

1. What is a distribution problem?

A distribution problem is any issue that arises when attempting to deliver goods or services from one location to another. This can include challenges such as transportation logistics, supply chain management, and inventory control.

2. How can distribution problems impact businesses?

Distribution problems can have a significant impact on businesses, as they can result in delays, disruptions, and increased costs. This can lead to dissatisfied customers, lost revenue, and damage to a company's reputation.

3. What are some common causes of distribution problems?

Some common causes of distribution problems include inadequate planning, inefficient processes, supply chain disruptions, and unexpected changes in demand. External factors such as natural disasters or political unrest can also contribute to distribution problems.

4. How can businesses address and solve distribution problems?

Businesses can address distribution problems by implementing effective supply chain management strategies, utilizing technology to optimize processes, and regularly reviewing and updating distribution plans. It is also important to have contingency plans in place to address unexpected issues.

5. What role do data and analytics play in solving distribution problems?

Data and analytics can play a crucial role in solving distribution problems by providing insights and identifying patterns or inefficiencies in the supply chain. By analyzing data, businesses can make informed decisions and take proactive measures to improve their distribution processes.

Back
Top