- #1
transmini
- 81
- 1
Homework Statement
$$\int_{-\infty}^\infty \space \frac{cos(2x)}{x-3i}dx$$
Homework Equations
The Attempt at a Solution
$$\int_{-R}^R \space \frac{e^{2ix}}{x-3i}dx + \int_{C_R} \space \frac{e^{2iz}}{z-3i}dz = 2\pi i\sum\space res \space f(z)$$
Then using Jordan's Lemma, as ##R\to\infty## the 2nd integral on the left hand side goes to 0.
$$\int_{-\infty}^\infty \space \frac{e^{2ix}}{x-3i}dx + \int_{C_\infty} \space \frac{e^{2iz}}{z-3i}dz = 2\pi i\sum\space res \space f(z)$$
$$\int_{-R}^R \space \frac{e^{2ix}}{x-3i}dx + 0 = 2\pi i (lim_{z\to 3i} (z-3i)\frac{e^{2iz}}{z-3i}) = 2\pi i e^{-6}$$
$$\int_{-R}^R \space \frac{e^{2ix}}{x-3i}dx = \int_{-R}^R \space \frac{cos(2x)}{x-3i}dx + i\int_{-R}^R \space \frac{sin(2x)}{x-3i}dx = 2\pi i e^{-6}$$
matching real and imaginary parts gives
$$\int_{-R}^R \space \frac{cos(2x)}{x-3i}dx = 0$$
however the answer is written as ##i\pi e^{-6}##. This one I'm totally lost on. This is the exact method used on every single problem in the section, but for some reason doesn't work here at all, unless I'm completely missing my mistake. Any suggestions? Thanks.