- #1
Addez123
- 199
- 21
- Homework Statement
- $$f(x,y) = (x^2 +2y^2)e^{-x^2-y^2}$$
where
$$x, y \in R$$
- Relevant Equations
- Math
I've double-checked my equations and can't find what's wrong.
First I calculate the partials:
$$f_x = (2x - 2x^3 -4xy^2)e^{-x^2, -y^2}$$
$$f_y = (-2yx^2 + 4y - 4y^3)e^{-x^2, -y^2}$$
By setting f_x = 0 I get:
$$x^2 = 1 - 2y^2$$
Then I calculate f_y = 0
$$-2yx^2 + 4y - 4y^3 = 0$$
I plug in the results from f_x into my f_y equation and get
$$-2y(1 - 2y^2) + 4y - 4y^3 = 0 $$
$$y = 0 => x = +-1$$
So my critical points are (1, 0) and (-1, 0)
$$f(1,0) = e^-1$$
The answer is f(0, +-1) = 2e^-1
Again, have no idea how I missed this since this time I don't even have any boundaries to evaluate and the solution is not at infinite.
First I calculate the partials:
$$f_x = (2x - 2x^3 -4xy^2)e^{-x^2, -y^2}$$
$$f_y = (-2yx^2 + 4y - 4y^3)e^{-x^2, -y^2}$$
By setting f_x = 0 I get:
$$x^2 = 1 - 2y^2$$
Then I calculate f_y = 0
$$-2yx^2 + 4y - 4y^3 = 0$$
I plug in the results from f_x into my f_y equation and get
$$-2y(1 - 2y^2) + 4y - 4y^3 = 0 $$
$$y = 0 => x = +-1$$
So my critical points are (1, 0) and (-1, 0)
$$f(1,0) = e^-1$$
The answer is f(0, +-1) = 2e^-1
Again, have no idea how I missed this since this time I don't even have any boundaries to evaluate and the solution is not at infinite.