- #1
yungman
- 5,755
- 293
This is from Griffiths page 446.
In radiating dipoles:
[tex] V(\vec r,t)=\frac 1 {4\pi \epsilon_0} \left [ \frac {q_0 cos [\omega(t- \frac {\eta_+} c )]}{\eta_+}- \frac {q_0 cos [\omega(t- \frac {\eta_- } c)]}{\eta_-} \right ] [/tex]
Given conditions d<< [itex]\eta\;[/itex] and d<< [itex] \frac c {\omega}[/itex] :
[tex] V_{(\eta,\theta,t)} = \frac {q_0 d cos \theta}{4\pi \epsilon_0 r} \left [ -\frac {\omega}{c} sin[\omega(t-\frac {\eta}{c}]+\frac 1 {\eta} cos[\omega(t-\frac {\eta}{c}]\right ] [/tex]
But then the book claimed if [itex] \eta [/itex] >> [itex] \frac c {\omega}\; [/itex], then:[tex] V_{(\eta,\theta,t)} = \frac {q_0 d cos \theta}{4\pi \epsilon_0 r} \left [ -\frac {\omega}{c} sin[ \omega(t-\frac {\eta}{c} ] \right ] = -\frac {q_0\; d\;\omega\; cos \theta}{4\pi \epsilon_0 c\; r} sin[ \omega(t-\frac {\eta}{c} ] [/tex]I don't see why if [itex] \eta [/itex] >> [itex] \frac c {\omega}\; [/itex], then
[tex] \frac 1 {\eta} cos[\omega(t-\frac {\eta}{c}] = 0 [/tex]
It look so simple but I just don't see it. Please explain to me.
Thanks
Alan
In radiating dipoles:
[tex] V(\vec r,t)=\frac 1 {4\pi \epsilon_0} \left [ \frac {q_0 cos [\omega(t- \frac {\eta_+} c )]}{\eta_+}- \frac {q_0 cos [\omega(t- \frac {\eta_- } c)]}{\eta_-} \right ] [/tex]
Given conditions d<< [itex]\eta\;[/itex] and d<< [itex] \frac c {\omega}[/itex] :
[tex] V_{(\eta,\theta,t)} = \frac {q_0 d cos \theta}{4\pi \epsilon_0 r} \left [ -\frac {\omega}{c} sin[\omega(t-\frac {\eta}{c}]+\frac 1 {\eta} cos[\omega(t-\frac {\eta}{c}]\right ] [/tex]
But then the book claimed if [itex] \eta [/itex] >> [itex] \frac c {\omega}\; [/itex], then:[tex] V_{(\eta,\theta,t)} = \frac {q_0 d cos \theta}{4\pi \epsilon_0 r} \left [ -\frac {\omega}{c} sin[ \omega(t-\frac {\eta}{c} ] \right ] = -\frac {q_0\; d\;\omega\; cos \theta}{4\pi \epsilon_0 c\; r} sin[ \omega(t-\frac {\eta}{c} ] [/tex]I don't see why if [itex] \eta [/itex] >> [itex] \frac c {\omega}\; [/itex], then
[tex] \frac 1 {\eta} cos[\omega(t-\frac {\eta}{c}] = 0 [/tex]
It look so simple but I just don't see it. Please explain to me.
Thanks
Alan