Another trigonometric equality

In summary, the "Another trigonometric equality" is a mathematical concept that relates the sides and angles of a right triangle. It can be represented by the formula a² + b² = c² and is a special case of the Pythagorean Theorem. The three basic trigonometric ratios, sine, cosine, and tangent, are derived from this equality and are used to solve for missing sides and angles in right triangles. This concept has practical applications in various fields, including architecture, engineering, and navigation.
  • #1
Albert1
1,221
0
the units of all angles :degree
gien :$tan\, x\,+tan\,(x+60)\,-\,tan(60-x)=3tan(3x)$
prove :$tan^2\, x\,+tan^2\,(x+60)\,+\,tan^2(60-x)=9tan^2(3x)+6$
 
Mathematics news on Phys.org
  • #2
My solution:

First notice that

i.
$\begin{align*}\small\tan 3x&=\dfrac{\tan x(3-\tan^2 x)}{1-3\tan^2x}\\&= \tan x \left(\dfrac{(\sqrt{3})^2-\tan^2 x}{1^2-(\sqrt{3} \tan x)^2} \right)\\&=\tan x \left(\dfrac{(\sqrt{3}-\tan x)(\sqrt{3}+\tan x)}{(1+\sqrt{3} \tan x)(1-\sqrt{3} \tan x)} \right)\\&=\tan x \tan(60-x) \tan (60+x)\end{align*}$

ii.
$\tan 3x=\dfrac{3\tan x-\tan^3 x}{1-3\tan^2x}\rightarrow\,\,\tan^3 x+\tan3x=3\tan x+3\tan^2 x \tan 3x$We are given $\tan x^{\circ}+\tan(60+x)^{\circ}-\tan(60-x)^{\circ}=3\tan 3x^{\circ}$

If we rewrite it as $\tan(60+x)^{\circ}-\tan(60-x)^{\circ}=3\tan 3x^{\circ}-\tan x^{\circ}$ and squaring it, we get:

$\tan^2(60+x)^{\circ}+\tan^2(60-x)^{\circ}-2\tan(60+x)^{\circ}\tan(60-x)^{\circ}=9\tan^2 3x^{\circ}+\tan^2 x^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}$

Modifying it a bit we get

$\begin{align*}\tan^2 x^{\circ}+\tan^2(60+x)^{\circ}+\tan^2(60-x)^{\circ}&=9\tan^2 3x^{\circ}+2\tan^2 x^{\circ}+2\tan(60+x)^{\circ}\tan(60-x)^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+2\tan^2 x^{\circ}+\dfrac{2\tan 3x^{\circ}}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+\dfrac{2(\tan^3 x^{\circ}+\tan 3x^{\circ})}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+\dfrac{2(3\tan x^{\circ}+3\tan^2 x^{\circ}\tan 3x^{\circ})}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+6+6\tan 3x^{\circ}\tan x^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+6\end{align*}$
 
Last edited:
  • #3
anemone said:
My solution:

First notice that

i. $\small\tan 3x=\dfrac{\tan x(3-\tan^2 x)}{1-3\tan^2x}= \tan x \left(\dfrac{(\sqrt{3})^2-\tan^2 x}{1^2-(\sqrt{3} \tan x)^2} \right)=\tan x \left(\dfrac{(\sqrt{3}-\tan x)(\sqrt{3}+\tan x)}{(1+\sqrt{3} \tan x)(1-\sqrt{3} \tan x)} \right)=\tan x \tan(60-x) \tan (60+x)$

ii. $\tan 3x=\dfrac{3\tan x-\tan^3 x}{1-3\tan^2x}\rightarrow\,\,\tan^3 x+\tan3x=3\tan x+3\tan^2 x \tan 3x$We are given $\tan x^{\circ}+\tan(60+x)^{\circ}-\tan(60+x)^{\circ}=3\tan 3x^{\circ}$

If we rewrite it as $\tan(60+x)^{\circ}-\tan(60+x)^{\circ}=3\tan 3x^{\circ}-\tan x^{\circ}$ and squaring it, we get:

$\tan^2(60+x)^{\circ}+\tan^2(60+x)^{\circ}-2\tan(60+x)^{\circ}\tan(60+x)^{\circ}=9\tan^2 3x^{\circ}+\tan^2 x^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}$

Modifying it a bit we get

$\begin{align*}\tan^2 x^{\circ}+\tan^2(60+x)^{\circ}+\tan^2(60+x)^{\circ}&=9\tan^2 3x^{\circ}+2\tan^2 x^{\circ}+2\tan(60+x)^{\circ}\tan(60+x)^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+2\tan^2 x^{\circ}+\dfrac{2\tan 3x^{\circ}}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+\dfrac{2(\tan^3 x^{\circ}+\tan 3x^{\circ})}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+\dfrac{2(3\tan x^{\circ}+3\tan^2 x^{\circ}\tan 3x^{\circ})}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+6+6\tan 3x^{\circ}\tan x^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+6\end{align*}$

the 3rd term in a couple of lines should be $\tan\left({60-x}\right)$
 
  • #4
kaliprasad said:
the 3rd term in a couple of lines should be $\tan\left({60-x}\right)$

Thanks, kali! I will fix it right away!
 
  • #5


First, let's simplify the left side of the equation:
$tan\, x\, +tan\,(x+60)\,-\,tan(60-x)$
Using the sum and difference identities for tangent, we can rewrite this as:
$tan\, x\, +tan\, x\, tan\, 60\, +tan\, 60\, tan\, x\,-\,tan\, 60\, tan\, x\, +tan\, x\, tan\, 60$
$tan\, x\, +\sqrt{3}\, tan\, x\, +\sqrt{3}\, tan\, x\,-\,\sqrt{3}\, tan\, x\, +tan\, x\, \sqrt{3}$
$3\, tan\, x\, +3\, tan\, x\, \sqrt{3}$
Now, using the double angle identity for tangent, we can write this as:
$3\, tan(2x)$
And finally, using the triple angle identity for tangent, we can rewrite this as:
$3\, tan(3x)$

Now, let's simplify the right side of the equation:
$9\, tan^2(3x)+6$
Using the triple angle identity for tangent, we can rewrite this as:
$9\, tan^2(3x)+6$
$9\, (tan\, 3x)^2+6$
$9\, (tan\, x\, tan\, 2x)^2+6$
$9\, (tan\, x\, \frac{2\, tan\, x}{1-tan^2x})^2+6$
$9\, (\frac{2\, tan\, x}{1-tan^2x})^2+6$
$9\, (\frac{2\, tan\, x}{cos^2\, x})^2+6$
$9\, (\frac{2\, sin\, x}{cos\, x})^2+6$
$9\, (2\, tan\, x)^2+6$
$9\, tan^2\, x+6$

Therefore, we have proved that the left side of the equation is equal
 

FAQ: Another trigonometric equality

What is the "Another trigonometric equality"?

The "Another trigonometric equality" is a mathematical concept that states the relationship between three sides and three angles of a right triangle.

What is the formula for the "Another trigonometric equality"?

The formula for the "Another trigonometric equality" is a² + b² = c², where a and b are the lengths of the two shorter sides (legs) of the right triangle, and c is the length of the longest side (hypotenuse).

How is the "Another trigonometric equality" different from the Pythagorean Theorem?

The "Another trigonometric equality" is a special case of the Pythagorean Theorem, where the triangle has a right angle. It is commonly used to solve for missing sides and angles in right triangles.

What are the three basic trigonometric ratios that are derived from the "Another trigonometric equality"?

The three basic trigonometric ratios that are derived from the "Another trigonometric equality" are sine, cosine, and tangent. These ratios are used to relate the angles and sides of a right triangle.

How can the "Another trigonometric equality" be applied in real-world situations?

The "Another trigonometric equality" can be applied in various real-world situations, such as finding the height of a building or the distance across a river. It is also used in fields such as architecture, engineering, and navigation.

Similar threads

Replies
1
Views
834
Replies
11
Views
2K
Replies
28
Views
2K
Replies
1
Views
961
Replies
8
Views
2K
Replies
4
Views
2K
Replies
4
Views
937
Back
Top