Hello, Niles! I wish I could do some help.
You are infact using Dirac notation (DN). All the possible states of a certain quantum system form a Hilbert space (HS). Vectors in HS (generally complex rather than real) are denoted via the bra $|>$, and if one wants to represent a special state, one will enrich the formulism of the bra. For example, we use $|\phi>$ to represent the state of by the wavefunction $\phi$. As to eigen states, the corresponding eigenvalue or quantum number are generally put into the bra $|>$. Hence, $|x'>$ means the eigen state of the coordinate $x$(with eigenvalue x'), $|p'>$ means the eigen state of momemtum(with eigenvalue p'), $|En>$ or $|n>$ means the eigen state of energy(with eigenvalue En), and
$ |m,L> $ , as you put above, means the co-eigenstate of $(L_z, L^2)$ , with eigen values $ m\hbar $ and $ L(L+1)\hbar^2$ respectively.
And please also notice that, in Dirac notations above, we simply employ an abstract state vector, and refer to no concrete quantum mechanical representation.
Hence, indeed you know the answer if you know the meaning of Dirac notation.