- #1
terp.asessed
- 127
- 3
Homework Statement
There is an equal probability density for finding a particle anywhere in the box. Assume that the box is of length L.
What would the root-mean-square fluctation in position be?
Homework Equations
root-mean-square fluctation2 = <x2> - <x>2
The Attempt at a Solution
since there is an equal probability density anywhere in the box, I assumed normalization:
1 = integral (x=0 to L) p(x)dx = integral (x=0 to L) C dx
1 = C integral (x=0 to L) dx = CL
C = 1/L
probability density = p(x) = 1/L
So...from here, I got:
<x> = integral (x=0 to L) p(x) x p(x) dx = 1/L2 integral (x=0 to L) x dx = 1/2
<x2> = integral (x=0 to L) p(x) x2 p(x) dx = 1/L2 integral (x=0 to L) x2 dx = 1/2 = L/3
therefore:
root-mean-square fluctation2 = <x2> - <x>2 = L/3 - 1/2...which does not make sense at ALL--could someone point out the error I've made? I have no idea where I made a mistake because I believe the solution to be something like of one value, like 3/12 or something, not what I got...