- #1
srfriggen
- 307
- 7
- TL;DR Summary
- Can this popular problem be generalized to all angles?
Hello,
I am a high school math teacher and recently presented my students with an intriguing problem: "At any given moment, there are two antipodal points on Earth (180 degrees apart) that have the same temperature." This can be demonstrated using one great circle with two opposite points. If we assume they begin at differing temperatures and rotate them around the circle at the same rate, they will have encountered all intermediate temperatures by the time they've completed 180 degrees. Since they remain 180 degrees apart and the temperature changes continuously, they will have identical temperatures simultaneously at least once.
One of my students proposed extending this idea to points separated by different angles, such as 90 degrees, using a graphical approach, and it appears to be valid. I'm curious if this is a known extension or if anyone has explored similar generalizations.
Thank you.
I am a high school math teacher and recently presented my students with an intriguing problem: "At any given moment, there are two antipodal points on Earth (180 degrees apart) that have the same temperature." This can be demonstrated using one great circle with two opposite points. If we assume they begin at differing temperatures and rotate them around the circle at the same rate, they will have encountered all intermediate temperatures by the time they've completed 180 degrees. Since they remain 180 degrees apart and the temperature changes continuously, they will have identical temperatures simultaneously at least once.
One of my students proposed extending this idea to points separated by different angles, such as 90 degrees, using a graphical approach, and it appears to be valid. I'm curious if this is a known extension or if anyone has explored similar generalizations.
Thank you.