- #1
scoobmx
- 27
- 1
Does this operator (in 3D):
[tex]ε_{ijk}∇_k = \begin{pmatrix}
0 & \frac{\partial}{\partial z} & -\frac{\partial}{\partial y}\\
-\frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x}\\
\frac{\partial}{\partial y} & -\frac{\partial}{\partial x} & 0
\end{pmatrix}[/tex]
have a formal name and a more compact symbolic representation?
[tex]ε_{ijk}∇_k = \begin{pmatrix}
0 & \frac{\partial}{\partial z} & -\frac{\partial}{\partial y}\\
-\frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x}\\
\frac{\partial}{\partial y} & -\frac{\partial}{\partial x} & 0
\end{pmatrix}[/tex]
have a formal name and a more compact symbolic representation?
Last edited: