- #1
center o bass
- 560
- 2
The killing form on a lie algebra is defined as
$$B(X,Y) = \text{Tr}ad_X \circ ad_Y$$
where ##ad_X: \mathfrak{g} \to \mathfrak{g}## is given by ##ad_X(Y) = [X,Y]##, where the latter is the lie bracket between X and Y in ##\mathfrak{g}##. Expressed in terms of components on a basis on ##\mathfrak{g}## we have
$$B_{ij} = c_{il}^{\ \ k} c_{jk}^{\ \ l}$$.
The killing form can serve as a biinvariant metric on the lie group G, and I've seen it stated several times that, if the group G is simple, then all other biinvariant metrics are proportional to the killing form. Especially the formula
$$B(X,Y) \sim \text{Tr}(\rho(X)\rho(Y))$$
where ##\rho## is a representation of ##\mathfrak{g}## is thrown a lot around.
So I wonder how this statement is proved?
$$B(X,Y) = \text{Tr}ad_X \circ ad_Y$$
where ##ad_X: \mathfrak{g} \to \mathfrak{g}## is given by ##ad_X(Y) = [X,Y]##, where the latter is the lie bracket between X and Y in ##\mathfrak{g}##. Expressed in terms of components on a basis on ##\mathfrak{g}## we have
$$B_{ij} = c_{il}^{\ \ k} c_{jk}^{\ \ l}$$.
The killing form can serve as a biinvariant metric on the lie group G, and I've seen it stated several times that, if the group G is simple, then all other biinvariant metrics are proportional to the killing form. Especially the formula
$$B(X,Y) \sim \text{Tr}(\rho(X)\rho(Y))$$
where ##\rho## is a representation of ##\mathfrak{g}## is thrown a lot around.
So I wonder how this statement is proved?