- #1
DreamWeaver
- 303
- 0
Evening all! (Sun)Do any of you know of a -relatively - elementary approach to Vieta's forumula, without going into hypergeometric functions and associated repeated fractions, etc?
In short, an ideas or suggestions on how to prove that:
\(\displaystyle \sqrt{ \frac{1}{2} } \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} } } \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} } } }\, \cdots = \frac{2}{\pi}\)Thanks! (Hug)
In short, an ideas or suggestions on how to prove that:
\(\displaystyle \sqrt{ \frac{1}{2} } \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} } } \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} + \frac{1}{2} \sqrt{ \frac{1}{2} } } }\, \cdots = \frac{2}{\pi}\)Thanks! (Hug)