- #1
Math100
- 797
- 221
- Homework Statement
- Establish the following statement:
Any integer of the form ## 8^n+1 ##, where n##\geq##1, is composite.
[Hint: ## 2^n+1\mid 2^{3n} +1 ##.]
- Relevant Equations
- None.
Proof:
Suppose ##a=8^n+1 ## for some ##a \in\mathbb{Z}## such that n##\geq##1.
Then we have ##a=8^n+1 ##
=## (2^3)^n+1 ##
=## (2^n+1)(2^{2n} -2^n+1) ##.
This means ## 2^n+1\mid 2^{3n} +1 ##.
Since ##2^n+1>1## and ##2^{2n} -2^n+1>1## for all n##\geq##1,
it follows that ##8^n+1## is composite.
Therefore, any integer of the form ##8^n+1 ##, where n##\geq##1, is composite.
Suppose ##a=8^n+1 ## for some ##a \in\mathbb{Z}## such that n##\geq##1.
Then we have ##a=8^n+1 ##
=## (2^3)^n+1 ##
=## (2^n+1)(2^{2n} -2^n+1) ##.
This means ## 2^n+1\mid 2^{3n} +1 ##.
Since ##2^n+1>1## and ##2^{2n} -2^n+1>1## for all n##\geq##1,
it follows that ##8^n+1## is composite.
Therefore, any integer of the form ##8^n+1 ##, where n##\geq##1, is composite.
Last edited: