- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{2.8.1}$
The vertical circular cylinder has radius r ft and height h ft.
If the height and radius both increase at the constant rate of 2 ft/sec,
Then what is the rate at which the lateral surface area increases?
\een
$\begin{array}{ll}
a&4\pi r\\
b&2\pi(r+h)\\
c&4\pi(r+h)\\
d&4\pi rh\\
e&4\pi h
\end{array}$
ok here is my setup
\begin{array}{lll}
\textit{given rates}
&\dfrac{dr}{dt}=2 \quad \dfrac{dh}{dt}=2
&(1)\\ \\
\textit{surface area eq}
&2\pi rh
&(2)\\ \\
\end{array}
so far
The vertical circular cylinder has radius r ft and height h ft.
If the height and radius both increase at the constant rate of 2 ft/sec,
Then what is the rate at which the lateral surface area increases?
\een
$\begin{array}{ll}
a&4\pi r\\
b&2\pi(r+h)\\
c&4\pi(r+h)\\
d&4\pi rh\\
e&4\pi h
\end{array}$
ok here is my setup
\begin{array}{lll}
\textit{given rates}
&\dfrac{dr}{dt}=2 \quad \dfrac{dh}{dt}=2
&(1)\\ \\
\textit{surface area eq}
&2\pi rh
&(2)\\ \\
\end{array}
so far
Last edited: