MHB Apc.9.3.1 solution to the differential equation condition

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
253 Which of the following is the solution to the differential equation condition
$$\dfrac{dy}{dx}=2\sin x$$
with the initial condition
$$y(\pi)=1$$
a. $y=2\cos{x}+3$
b. $y=2\cos{x}-1$
c. $y=-2\cos{x}+3$
d. $y=-2\cos{x}+1$
e. $y=-2\cos{x}-1$

integrate
$y=\displaystyle\int 2\sin x\, dx =-2\cos(\pi)+C$
then plug in $y(\pi)=1$
$-2\cos(\pi)+C=1
\Rightarrow
-2(-1)+C=1
\Rightarrow
C=-1$
therefore
$y=-2\cos(\pi)-1$
which is etypos maybe!
 
Last edited:
Physics news on Phys.org
karush said:
253 Which of the following is the solution to the differential equation condition
$$\dfrac{dy}{dx}=2\sin x$$
with the initial condition
$$y(\pi)=1$$
a. $y=2\cos{x}+3$
b. $y=2\cos{x}-1$
c. $y=-2\cos{x}+3$
d. $y=-2\cos{x}+1$
e. $y=-2\cos{x}-1$

integrate
$y=\displaystyle\int 2\sin x\, dx =\color{red}-2\cos{x}+C$
then plug in $y(\pi)=1$
$-2\cos(\pi)+C=1
\Rightarrow
-2(-1)+C=1
\Rightarrow
C=-1$
therefore
$\color{red}y=-2\cos{x}-1$
which is etypos maybe!

​yep
 
:cool:
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top