Apostol question about the differential equations of a falling object

  • #1
zenterix
515
74
Homework Statement
Refer to example 2 of section 8.6. Use the chain rule to write

$$\frac{dv}{dt}=\frac{ds}{dt}\frac{dv}{ds}=v\frac{dv}{ds}$$

and thus show that the differential equation in the example can be expressed as follows

$$\frac{ds}{dv}=\frac{bv}{c-v}$$

where ##b=m/k## and ##c=gm/k##. Integrate this equation to express ##s## in terms of ##v##. Check your result with the formulas for ##v## and ##s## derived in the example
Relevant Equations
The cited example 2 is a bit large to be shown here in all its steps.

Here are the main points and equations.

A body of mass ##m## is dropped from rest from a great height in the earth's atmosphere. Assume it falls in a straight line and that the only forces acting on it are the earth's gravitational attraction and a resisting force due to air resistance which is proportional to its velocity.

Newton's second law tells us

$$ma=mg-kv$$

where ##k## is some positive constant and ##-kv## is the force due to air resistance.

$$mv'=mg-kv$$

is a first-order equation in velocity ##v##.

We can write this in the form

$$v'+\frac{k}{m}v=g$$

which we can solve using an integrating factor to obtain (assuming v(0)=0)

$$v(t)=e^{-kt/m}\int_0^t ge^{ku/m}du=\frac{mg}{k}(1-e^{-kt/m})$$

we can differentiate to find acceleration

$$a(t)=ge^{-kt/m}$$

We can also integrate to obtain position

$$s(t)=\frac{mg}{k}t+\frac{gm^2}{k^2}e^{-kt/m}+C$$

and if ##s(0)=0## we have

$$s(t)=\frac{mg}{k}t+\frac{gm^2}{k^2}(e^{-kt/m}-1)$$
Here is my solution to this problem. Unfortunately, I can't check it because it is not contained in the solution manual.

$$\frac{dv}{dt}=\frac{dv}{ds}\frac{ds}{dt}=v\frac{dv}{ds}$$

$$\frac{ds}{dv}=\frac{v}{v'}=\frac{v}{ge^{-kt/m}}$$

$$=\frac{\frac{m}{k}v}{\frac{gm}{k}e^{-kt/m}}$$

$$=\frac{\frac{m}{k}v}{\frac{gm}{k}-\frac{gm}{k}+\frac{gm}{k}e^{-kt/m}}$$

$$=\frac{\frac{m}{k}v}{\frac{gm}{k}-\frac{gm}{k}(e^{-kt/m}-1)}$$

$$=\frac{bv}{c-v}$$

My main question is about the integration of this expression to obtain ##s## in terms of ##v##.

$$\int_0^v \frac{ds}{dv}dv=\int_{s(0)}^{s(v)} ds = s(v)-s(0)=\int_0^v\frac{bv}{c-v}dv$$

$$=bc(\ln{(c)}-\ln{(c-v)})-bv$$

$$s(v)=s(0)+bc(\ln{(c)}-\ln{(c-v)})-bv$$

I don't recall seeing this relationship very often and so I am not sure if this is correct. The problem says to check this result with the equations derived in the cited Example 2. But that example derived equations for ##v## and ##s## relative to ##t##. How would I go about using those equations to check my result of ##s## as a function of ##v##?
 
Physics news on Phys.org
  • #2
I think the intention is to derive the ODE as [tex]
ma = mv\frac{dv}{ds} = mg - kv[/tex] so that [tex]
\frac{ds}{dv} = \frac{mv}{mg - kv} = \frac{(m/k)v}{(mg/k) - v} = \frac{bv}{c - v}.[/tex] Note that the solution to the earlier exercise can be written in the form [tex]\begin{split}
v(t) &= c(1 - e^{-b/t}) \\
s(t) - s_0 &= ct - bv(t).\end{split}[/tex] To show that [tex]
s(v) - s_0 = bc\ln|c| - bv - bc\ln|c - v| = ct - bv = s(t) - s_0[/tex] the easiest way is to solve [itex]v(t)[/itex] for [itex]t[/itex] to obtain [tex]\begin{split}
e^{-t/b} &= \frac{c - v}{c} \\
t &= b\ln|c| - b\ln|c - v|.\end{split}[/tex]
 
Last edited:
  • Like
Likes zenterix
  • #3
Attached are the full calculations leaving ##v_0## as a variable (just for added suffering with the algebra). Unfortunately, I couldn't figure out a way to post it directly here (file either too large or too low quality).
 

Attachments

  • 8.7 - Physical Problems Leading to 1st Order LDE.pdf
    1 MB · Views: 42

Similar threads

  • Calculus and Beyond Homework Help
Replies
1
Views
672
Replies
5
Views
1K
  • Calculus and Beyond Homework Help
Replies
4
Views
1K
  • Calculus and Beyond Homework Help
Replies
5
Views
924
  • Calculus and Beyond Homework Help
Replies
7
Views
390
  • Calculus and Beyond Homework Help
Replies
1
Views
531
  • Calculus and Beyond Homework Help
Replies
7
Views
718
  • Calculus and Beyond Homework Help
Replies
4
Views
1K
  • Calculus and Beyond Homework Help
Replies
4
Views
1K
  • Calculus and Beyond Homework Help
Replies
5
Views
1K
Back
Top