Apparent depth of an object underwater

AI Thread Summary
The discussion focuses on determining the apparent depth of an object underwater using Snell's law and the approximation for small angles. The initial challenge involves finding the angles and the point along the water's surface where light exits to reach an observer's eye. After some calculations, the user arrives at a solution with the distance from the left corner being approximately 18 meters and an apparent depth of about 0.19 meters. The final confirmation indicates that the calculations are correct. This highlights the application of Snell's law in practical scenarios involving light refraction.
lorenz0
Messages
151
Reaction score
28
Homework Statement
A person (the arrow at the upper left of the figure) of height ##h=1.7m## is standing at the edge of a pool of water of depth ##d=1.8m## in which there is an object located at the farthest end of the pool (black ball in the figure). What is the apparent depth of this object for the person looking at the pool, i.e. what is the depth of the object observed by the person (red ball in the figure)?
Relevant Equations
##n_1 \sin(\theta_1)=n_2\sin(\theta_2)##
I would know how to solve this problem if the person had been standing pratically above of the object underwater by using Snell's law and the approximation ##\sin(\theta)\approx\tan(\theta)## fopr ##\theta## small, but in this case I don't see how to find the angles ##\theta_1## and ##\theta_2## and, above all, at what point along the surface of the water the light with come out in such a way as to reach the eye of the person. Without this last information, when I try to set up Snell's law I get (with ##x## representing the distance from the left corner at which the light comes out): ## \frac{d^2+(L-x)^2}{d'^2+(L-x)^2}=1.33^2 ## but I have too many variables.

So, I would appreciate if someone could point me twoards a viable strategy to solve this problem. Thanks
 

Attachments

  • refraction.png
    refraction.png
    9.8 KB · Views: 125
Physics news on Phys.org
Find the two angles as functions of x.
 
haruspex said:
Find the two angles as functions of x.
Thanks. I got ##x\approx 18\ m## and an apparent depth of ##d'\approx 0.19\ m##.
 
lorenz0 said:
Thanks. I got ##x\approx 18\ m## and an apparent depth of ##d'\approx 0.19\ m##.
That looks right.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top