- #1
mahler1
- 222
- 0
Homework Statement .
Let ##(X,d)## be a complete metric space without isolated points and let ##D## be an enumerable dense subset of ##X##. Prove that ##D## is not a ##G_δ## (countable intersection of open sets).
The attempt at a solution.
Suppose that ##D## is a ##G_δ##. So ##D=\bigcap_{n \in \mathbb N} A_n## , ##A_i## open for every ##i \in \mathbb N##. Then ##D^c=\bigcup_{n \in \mathbb N} X \setminus A_n## is a countable union of closed sets. Here comes my question: How could I prove that this sets are nowhere dense? I know that ##\overline {D}=X## by hypothesis; then ##\overline {D}^c=\emptyset##, but I want to prove that ##\overline {D^c}^\circ=\emptyset##.
If I could prove that the complement is nowhere dense, then ##X=A \cup B## where ##A=\bigcup_{n \in \mathbb N, d_n \in D} \{d_n\}## and ##B=D^c##. Since X has no isolated points, each ##\{d_n\}^\circ=\emptyset##. Then ##X## is the union of nowhere-dense closed sets, which is absurd by the Baire category theorem.
Let ##(X,d)## be a complete metric space without isolated points and let ##D## be an enumerable dense subset of ##X##. Prove that ##D## is not a ##G_δ## (countable intersection of open sets).
The attempt at a solution.
Suppose that ##D## is a ##G_δ##. So ##D=\bigcap_{n \in \mathbb N} A_n## , ##A_i## open for every ##i \in \mathbb N##. Then ##D^c=\bigcup_{n \in \mathbb N} X \setminus A_n## is a countable union of closed sets. Here comes my question: How could I prove that this sets are nowhere dense? I know that ##\overline {D}=X## by hypothesis; then ##\overline {D}^c=\emptyset##, but I want to prove that ##\overline {D^c}^\circ=\emptyset##.
If I could prove that the complement is nowhere dense, then ##X=A \cup B## where ##A=\bigcup_{n \in \mathbb N, d_n \in D} \{d_n\}## and ##B=D^c##. Since X has no isolated points, each ##\{d_n\}^\circ=\emptyset##. Then ##X## is the union of nowhere-dense closed sets, which is absurd by the Baire category theorem.
Last edited: