- #1
Aeonace32
- 6
- 0
I have an idea in which I need to manipulate a positron using an electrical field. However, in order for the problem to work, I need to make sure that the positron's kinetic energy is under 511 keV. to do this, I used Coulomb's law (F=[itex]\frac{kQ1Q2}{r^2}[/itex]) to obtain the force. Because F = ma, I divided both sides by mass to get acceleration. I know that integrating acceleration with respect to time yields velocity. However, in this case, acceleration is not a function of time, but rather a function of distance. My goal is to obtain an equation which can give me the velocity at different distances so that I can plug the right velocity into the kinetic energy formula. Is integrating the way to solve this, and if so, how do I do it correctly?