- #1
Government$
- 87
- 1
Homework Statement
Of all cylinders inscribed in sphere of radius [itex]R[/itex] largest area of side([itex]M[/itex]) has cylinder which hight is [itex]R\sqrt{2}[/itex]. Prove.
The Attempt at a Solution
I understand how to prove this i only have problem with derivative:
[itex]M=2*r*Pi*H[/itex] and [itex]r=\frac{\sqrt{(2R)^2 - H^2}}{2}[/itex]
[itex]M=Pi*H*\sqrt{(2R)^2 - H^2}[/itex]
[itex]M^{'}=Pi*(\sqrt{(2R)^2 - H^2}) + \frac{Pi*H}{2*\sqrt{(2R)^2 - H^2}}[/itex]
Then
[itex]M^{'}=Pi*\frac{8R^2 -2H^2 + H}{2\sqrt{(2R)^2 - H^2}}[/itex] so how can i from this get that [itex]R*\sqrt{2} = H[/itex]
My textbook says that [itex]M^{'}=Pi*\frac{4R^2 -2H^2}{\sqrt{(4R)^2 - H^2}}[/itex] therefore [itex]R*\sqrt{2} = H[/itex]
Last edited: