- #1
ineedhelpnow
- 651
- 0
I don't know under what forum to post this but since I am learning about it in calculus, i guess ill just put it here for now any maybe itll get moved to the right place. I'm given a simple circuit with resistance $12 \varOmega$ and the inductance is $4 H$ with a voltage of $40 V$. Find I(t) and I(0.1). Here's what I did:
$L=2$
$R=10$
$E(t)=40$
$L \frac{dI}{dt}+RI=E(t)$
$2 \frac{dI}{dt}+10I=40$
$\frac{dI}{dt}+5I=20$
$e^{\int \ 5 dt}=e^{5t}$
$e^{5t} \frac{dI}{dt}+5e^{5t}I=20e^{5t}$
$\frac{dI}{dt}(e^{5t}I)=20e^{5t}$
$e^{5t}I=\int \ 20e^{5t}dt=4e^{5t}+C$
$I(t)=4+Ce^{-5t}$
so to solve for C:
$I(0)=0$ so $4+C=0$ and $C=-4$
$I(t)=4(1-e^{-5t})$
solving for I(0.1):
$I(0.1)=4(1-e^{-5(0.1)})= 4(1-e^{-1/2})$
did i do it right?
$L=2$
$R=10$
$E(t)=40$
$L \frac{dI}{dt}+RI=E(t)$
$2 \frac{dI}{dt}+10I=40$
$\frac{dI}{dt}+5I=20$
$e^{\int \ 5 dt}=e^{5t}$
$e^{5t} \frac{dI}{dt}+5e^{5t}I=20e^{5t}$
$\frac{dI}{dt}(e^{5t}I)=20e^{5t}$
$e^{5t}I=\int \ 20e^{5t}dt=4e^{5t}+C$
$I(t)=4+Ce^{-5t}$
so to solve for C:
$I(0)=0$ so $4+C=0$ and $C=-4$
$I(t)=4(1-e^{-5t})$
solving for I(0.1):
$I(0.1)=4(1-e^{-5(0.1)})= 4(1-e^{-1/2})$
did i do it right?