MHB Apply Binomial Theorem: Expand (x-2y)^3

AI Thread Summary
To expand the binomial expression (x - 2y)^3 using the binomial theorem, the formula is applied as (a + b)^n = Σ(n choose r) a^(n-r) b^r. Rewriting (x - 2y) as (x + (-2y)), the expansion results in the sum of terms involving coefficients from the binomial coefficients. The final expanded form is x^3 - 6x^2y + 12xy^2 - 8y^3. This demonstrates the application of the binomial theorem to expand the given expression accurately.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How to expand this binomial expansion?


a.) (x - 2y)^3

with the equation:

(n over r) x [a^(n-r)] x (b^r)

Thank you!

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Person,

The binomial theorem may be stated as:

$$(a+b)^b=\sum_{r=0}^{n}{n \choose r}a^{n-r}b^r$$

And so, for the given binomial to be expanded, we have:

$$(x-2y)^3=(x+(-2y))^3=\sum_{r=0}^{3}{3 \choose r}x^{n-r}(-2y)^r$$

$$(x-2y)^3={3 \choose 0}x^3(-2y)^0+{3 \choose 1}x^2(-2y)^1+{3 \choose 2}x^1(-2y)^2+{3 \choose 3}x^0(-2y)^3$$

$$(x-2y)^3=1\cdot x^3\cdot1+3x^2(-2y)+3x(-2y)^2+1\cdot1\cdot(-2y)^3$$

$$(x-2y)^3=x^3-6x^2y+12xy^2-8y^3$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top